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This data descriptor documents a dataset containing over 38 years of global reanalysis of wildfire danger. It
consists of seven fields to assess fuel moisture as well as fire behavior. The methodology employed to
generate these data is based on the Canadian Forest Fire Weather Danger Rating and utilizes weather
forcing from ERA-Interim, a global reanalysis dataset produced by the European Centre for Medium-range
Weather Forecasts. Global fire danger reanalysis data are used to quantify the climatological expectation of
fire danger at a certain time of the year and for any location on the globe. It can be regarded as a
complementary product to the fire danger forecasts issued daily by the Global Wildfire Information System
(GWIS) under the umbrella of the European Copernicus program.
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Background & Summary
Forest fires are extremely costly hazards in terms of lives, natural resources and infrastructures. In the last
decades, the low predictability of ignition due to anthropogenic factors have increasingly put a strain on
forestry agencies1 as well as on local economies. According to NOAA’s National Center for
Environmental Information, the costs from the 2017 wildfire season in western USA were $18 billion,
triple the previous U.S. annual wildfire cost record2. Wildfires are also recognised as one of the most
significant environmental threats in Europe, where most of the burnt areas are concentrated in the
Mediterranean region3.

The scientific community is actively studying (through in situ observation and remote sensing) fire
behavior to better identify the atmospheric predictors that determine a sustained fire activity once an
ignition has occurred. These predictors are then used to assess current danger condition and to forecast
its evolution in the future. It is intuitive that low humidity combined to high temperature tends to dry
dead and live fuels which ignite easier than moist fuel. In addition, high wind variability favors the spread
over larger areas, compared to cases in which wind blows mainly in one dominant direction. Most of
these mechanisms are in-built in the Canadian Fire Weather Index (FWI) system4,5 which is one of the
most widely used model to estimate fire danger worldwide6,7. The FWI operates by predicting the
responses of fuel moisture to atmospheric forcings at different soil depths and by combining these to
derive fire behavior indices in terms of ease of spread and intensity. The FWI danger rating system was
designed to exploit the information provided by in situ observations and it only depends on weather
variables. Therefore, it only provides a qualitative overview of where conditions could lead to
uncontrollable fires. However, by lacking information on the available fuel load, the vegetation stage and
the topography (e.g. terrain slope) FWI is often used in combination to local information to gain a
quantitative assessment of fire activity once an ignition has taken place. For its simplicity of calculation
the FWI danger rating system is adopted by many fire agencies around the world and operationally used
to issue fire alerts and allocate resources on the ground. The FWI system is also an important building
block of the Global Wildfire Information System (GWIS, http://gwis.jrc.ec.europa.eu/), a joint initiative of
the GEO (http://www.earthobservations.org) and the Copernicus (http://copernicus.eu/main/emergency-
management) Work Programs, which provides access to worldwide information on wildfires.
Information about the current situations can be obtained from the GWIS’ web-based viewer which is
designed for efficient browsing of fire danger forecasts, as well as information on ongoing active fires,
assessment of burnt areas and fire emissions. The daily forecasts of FWI model outputs are provided by
the European Centre for Medium-range Weather Forecasts (ECMWF) using the atmospheric forcings
calculated from its ensemble prediction system (with a 10-day time horizon).

Although real-time fire danger forecasts are fundamentally important for first responders, it is also
important to inform users of the value ranges considered dangerous for a given area. Indeed, the FWI was
designed as a regional danger rating system and a meaningful interpretation of the FWI values can only
come from the comparison with the range of possible historical values in that area. This historical
information is very valuable and it is encapsulated in the reanalysis records presented here8,9. A reanalysis
dataset is generated by combining a numerical weather prediction model and quality-controlled
observations for past conditions in a statistically optimal way by means of an assimilation scheme10. As
the final output is mostly controlled by observations, to a large extent it can be considered as a good
proxy for observed meteorological conditions. When compared to point-wise observations it also has the
benefit to provide spatially consistent fields, also in regions with poor observational coverage. The
consistency in time and space of a reanalysis dataset makes it the ideal choice to investigate temporal
trends and changes in the spatial variability of fire behavior. It is also a valuable resource to investigate the
relation between forest fires and climate variability over large areas. These applications are deemed
particularly relevant as the occurrence, length and frequency patterns of fire events are likely to change in
a changing climate11 and favorable fire conditions are going to be exacerbated by raising temperature12,13.
To ease the exploitation of this dataset ECMWF has also developed an open-source R package, called
‘caliver’9. This package has built-in functions to manipulate fire danger reanalysis data, for example by
spatial area cropping and by merging data slices to build timeseries. In the ‘Usage Notes’ section we
provide examples of the sort of manipulations that can be performed using the caliver package.

Over time, users’ requests for reanalysis data has increased and, in order to efficiently respond to users’
needs, ECMWF has started to archive reanalysis of the FWI system on Zenodo, a research data repository
which assigns all publicly available uploads a Digital Object Identifier (DOI) to make the upload uniquely
citeable. This repository is updated regularly and versioned according to the stable releases of the
ECMWF fire danger model. This paper describes the FWI reanalysis dataset, an extremely valuable
resource for forestry agencies and scientists in the field of wildfire danger modeling. We hope that this
work will boost the data uptake and visibility in the wider scientific community and beyond.

Methods
The fire danger reanalysis dataset is made of seven gridded fields (or indices) calculated from the
Canadian Fire Weather Index model using weather forcings from the ECMWF ERA-Interim reanalysis
dataset8,20. Fire danger indices are routinely computed and archived on an internal ECMWF database in
NetCDF format, packaged in daily layers and compressed to facilitate transfer over the network. At the
time of writing, data are available from 1st January 1980 to 30th June 2018 with a daily time step at 12
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local time. Layers are defined on a regular grid in the World Geodetic System 1984 (also known as WGS
1984, EPSG:4326). Latitudes span the range from −90 to +90 degrees, while longitudes are in the range
from 0 to 360 degrees. The spatial resolutions is 0.7 degrees (about 80 Km), thus each file is made of 256
rows, 512 columns and 14061 layers (one layer per time stamp).

In their raw form, the layers are defined in a coordinate system common to other ECMWF products
but requires manipulation in order to be combined with other information (e.g. administrative
boundaries and satellite imagery). In addition, there is a fair amount of pre-processing needed to make
the data in a form that is suitable to analyze historical trends and verify spatial patterns using remotely
sensed observations, as described in a previous work9. For these reasons, the FWI indices documented
here and archived in Zenodo are a slightly modified version of what is currently available on the ECMWF
archive. The processing workflow involved: (i) downloading and de-compressing daily raster maps for the
above mentioned seven fields, (ii) rotating each raster map so that longitudes are defined in the range
[−180, +180] and (iii) stacking the rotated raster maps of each index together in a three-dimensional
NetCDF file. Data transfer, or stage (i), would be the most time consuming part of the workflow,
especially if done by external users. Stage (ii) ensures consistency with conventions adopted by other
sources of relevant information such as: burned areas products from the Global Fire Emission Database
(GFED4, http://www.globalfiredata.org) and administrative boundaries provided by the Global
Administrative Areas database (GADM, https://gadm.org/). Lastly, stage (iii) generates a data cube of
about 7 GB for each fire danger index. This may sound a large dataset, but modern computers and
libraries can handle this volume of information very efficiently9,14.

Code availability
In the spirit of reproducibility, the code to extract the data from the ECMWF archive (using internal
access credentials), apply the changes described in the methods section and run the validation analysis, is
openly available in the GEFF-ERAI repository on GitHub15.

Data Records
The FWI rating system is described in detail by Van Wagner5. Below the fire danger indices made openly
available by ECMWF are briefly described, including links to the related archives on Zenodo. Due to the
large file size of each index (about 7 gigabytes), these are archived separately. The version is updated, at
least, once every year. Updates consist of appending data for the previous year to the existing records or a
re-analysed dataset if any bug was found and fixed. Every DOI mentioned below represents all versions of
each dataset (v2.2 is the most up-to-date at the time of writing), and the link will always resolve to the
latest one.

The dataset contains three measures of soil moisture calculated with different codes depending on the
fuel consistency:

● The Fine Fuel Moisture Code (FFMC, Data Citation 1) is a numeric rating of the moisture content of
litter and other cured fine fuels occupying the first fuel bed layers (surface layer, 1-2 cm deep). This
code is an indicator of the relative ease of ignition and the flammability of fine fuel. FFMC is
characterised by a fast response to weather variations, with a timelag of 2/3’s of a day under standard
conditions. The FFMC rating is defined in the range from 2 to 101, as suggested by Van Wagner5. The
typical FFMC default startup value is, by convention, equal to 85. The reanalysis dataset considered
here is obtained as a single model run starting on 1st January 1979. However, the first year is discarded
to ignore the effects of the initial model spin-up and no seasonal start-stopping rule is implemented
(same applies to the other indices).

● The Duff Moisture Code (DMC, Data Citation 2) is a numeric rating of the average moisture content
of loosely compacted organic layers of moderate depth (duff layer, 5–10 cm). This code gives an
indication of fuel consumption in moderate duff layers and medium-size woody material. DMC is
characterised by a medium-term response (about 10–12 days) to weather variations. The rating is
defined in the range from zero to infinity, however, the default startup value is conventionally set
equal to 6.

● The Drought Code (DC, Data Citation 3) is a numeric rating of the average moisture content of deep,
compact organic layers (deep duff layer, 1–20 cm). This code is a useful indicator of seasonal drought
effects on forest fuels and the amount of smoldering in deep duff layers and large logs. DC has a long-
term response (about 50 days) to weather variations. The rating is defined in the range from zero to
infinity, with a default startup value equal to 15.

From these weather-driven fuel moisture calculations, the FWI model generates the following fire
behavior indices:

● The Initial Spread Index (ISI, Data Citation 4) is a numeric rating that measures the rate at which a
fire would spread in its early stages shortly after ignition. It combines the effects of wind and the FFMC
on rate of spread without the influence of variable quantities of fuel. ISI is defined in the range from
zero to infinity.
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● The Build Up Index (BUI, Data Citation 5) is a numeric rating of the total amount of fuel available for
combustion. It is a weighted combination of the DMC and DC and defined in the range from zero to
infinity.

Lastly, the model computes the following two indices:

● The Fire Weather Index (FWI, Data Citation 6) integrates current ISI and BUI to produce a unitless
index of general fire intensity. It is defined in the range from zero to infinity and it is suitable as a
general index of fire danger.

● The Daily Severity Rating (DSR, Data Citation 7) is a numeric rating of the difficulty of controlling
fires. It is a non-linear transformation of the Fire Weather Index, intended to be more directly
proportional to the expected effort required for fire suppression. It is also considered suitable as fire
weather measure to be averaged over space (i.e. region) and time (i.e. season).

All datasets are calculated using a daily time step by interpolating the atmospheric fields at local noon
when fire conditions are considered to be at their worst. If a pixel is covered in snow for more than 20%
of its area, the values of ISI, BUI and FWI are reset to zero. This is to acknowledge that in snow areas fire
risk should be considered null. However the calculation of the fuel moisture codes (FFMC, DMC, DC) is
not suspended. This implies that there is no a priori overwintering applied as the decision on the length,
start and stop of the fire season is left to the user.

Each index describes a different aspect of the effect that fuel moisture and wind have on fire ignition
probability and its behavior, if started5. They can therefore have different fields of applications. However
it is worth stressing that these datasets, while being largely employed in fire control and management, do
not provide any indication on where a fire is likely to strike. In the calculation there is no information
about the likelihood of an ignition which, being either human or natural in origin, remains a stochastic
highly unpredictable process.

Code Source FFMC DMC DC ISI BUI FWI DSR

R package cffdrs 87.69 7.29 17.76 10.85 7.28 9.46 1.45

ECMWF 87.70 8.54 19.01 10.80 8.49 10.10 1.63

Table 1. Comparison between FWI system indices as calculated by ECMWF and the R package cffdrs.

Figure 1. Map of SYNOP stations. Yellow dots show locations of all the stations in use in 2017. A subset of

these (green dots) have enough records to be used for validation.
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Technical Validation
The validation procedure consists of (i) assessing that the implemented algorithm provides numerical
values consistent with what given by other FWI available codes (ii) assessing the quality of the dataset as a
proxy for observed values by comparing it with the FWI calculated using local data from a set of
monitoring stations. The former is carried out by comparing the results of the ECMWF code and the
output of the R package cffdrs16. The latter, instead, is obtained by point-inspecting the FWI data cube
stored in Zenodo using the coordinates of a representative set of manned and automated land-based
weather stations usually referred to as SYNOP stations.

Algorithm validation
An R package called cffdrs16, for the calculation of FWI system indices, is available through the official
CRAN repository. We feed both ECMWF model and this package with the same observed input data
records and check the consistency of the outputs (see Table 1). The test values are as follows:

● latitude = 45.98 degrees,
● temperature = 17 C,
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Figure 2. Spatial distribution of the model bias. Wet and dry season are shown in different panels.
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● relative humidity = 42,
● wind speed = 25 Km/h,
● precipitation = 0 mm

Although the outputs are rather close, they do not match exactly. The reason is that ECMWF model
follows the formulation defined in the reference FWI implementation outlined in Van Wagner17 without
modifications. Wang et al.16, instead, have modified some of the original equations (i.e. eqs 12 and 15)
leading to the calculation of DMC and DC. As a consequence, FWI and DSR also slightly differ.

Comparison with observed FWI
The last part of the validation consists of assessing the quality of the dataset as a proxy for observed
values. This is achieved by comparing the FWI from reanalysis with the same index calculated using local
data from a set of monitoring stations. Several meteorological observations are available at SYNOP
stations. For the validation of FWI we used: 2 meter temperature (T2), total precipitation accumulated
over the previous 24 h (P), 10 meter wind speed (W) and dew point temperature (Td). Relative humidity
(RH), needed by the FWI algorithm, is calculated from T2 and Td using the following equation which
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expresses an approximation of the inverted Clausius-Clapeyron relation18:

RH ¼ 6:11 � 107:5�
Td - 273:15

237:7þðTd - 273:15Þ

6:11 � 107:5�
T2 - 273:15

237:7þðT2 - 273:15Þ
� 100 ð1Þ

Although about 10,000 SYNOP stations recorded data in 2017, only 3084 of them recorded all the
necessary variables between 11 and 13 local time. This time window encompasses the local noon, time at
which the FWI from ERA-Interim is calculated. Comparing values within a time window, rather than at
12 local noon, was necessary to be able to extend the validation to as many stations as possible and avoid
time-offsets deriving from the use of Daylight Saving Time in some countries. All the SYNOP stations
and the subset used for this validation exercise are shown as yellow and green dots, respectively, in Fig. 1.
Stations suitable for validation are unevenly distributed in space: 94% fall in the northern hemisphere and
the remaining 6% in the southern hemisphere.

Observed and modeled FWI were compared using two metrics: bias and anomaly correlation. The bias
measures how the average reanalysis magnitude compares to the average observed magnitude. The
anomaly correlation compares how the modeled anomalies correspond to the observed anomalies.

The average bias and anomaly correlation are calculated at each station, during the wet and dry
seasons separately. By convention, the dry season in the northern hemisphere is assumed to start on 1st
April and end on 30 September, while in the southern hemisphere it starts on 1st October and ends on
31st March. The remaining part of the year is assumed to be the wet season. Stations with less than 30
days of recordings are discarded. The spatial distribution of the bias and anomaly correlation at the
SYNOP stations varies with season. This is mapped in Figs 2 and 3 and summarized in Table 2.

The metrics are mapped into 6 categories each: the bias goes from −∞ to +∞ with breaks
corresponding to the 5th, 25th, 50th, 75th and 95th local percentiles; the anomaly correlation goes
from −1 to +1 with breaks at 0.50, 0.60 (threshold commonly used to identify skillful models), 0.70, 0.80
and 0.90. Data is also distributed unevenly in time, with 70% of the records falling in the wet season and
the remaining 30% in the dry season (the most relevant in the context of wildfires).

ERA-Interim performs particularly well in Europe, as a result, the FWI validation shows low biases
and high anomaly correlations. The comparison between the calculation performed using ERA-Interim
and the measurements recorded by the SYNOP stations is more problematic in the Arctic, Indian and
Pacific oceans where the anomaly correlation is below 0.6. Problems in the representations of winds in
ERA-Interim at northern latitudes are well known. For instance, surface wind speed over the Scoresby
Sund region of east Greenland are lower than expected; in addition a climatology of katabatic flow along
the southeast coast of Greenland demonstrates that ERA-Interim wind speed is not consistent with
observations of topographically forced drainage flow in this region19. Tip jets and polar cyclones are
additional examples of Arctic mesoscale phenomena not well represented by the global reanalyses. In the

Region Season Stations Bias Anomaly correlation

1 Africa Dry 251 0.36 0.76

2 Africa Wet 267 1.47 0.82

3 America Dry 670 0.73 0.74

4 America Wet 874 0.20 0.67

5 Arctic Wet 4 0.20 0.43

6 Asia Dry 148 2.47 0.61

7 Asia Wet 419 −0.54 0.47

8 Atlantic Dry 26 2.18 0.43

9 Atlantic Wet 27 3.08 0.42

10 Australia Dry 5 −4.21 0.79

11 Australia Wet 2 −0.77 0.76

12 Europe Dry 168 0.27 0.83

13 Europe Wet 1443 0.23 0.66

14 Indian Dry 4 2.79 0.40

15 Indian Wet 4 1.29 0.55

16 Pacific Dry 83 1.09 0.55

17 Pacific Wet 81 0.20 0.60

Table 2. Number of SYNOP stations per region and season. For each group of stations, the median of
bias and anomaly correlation are calculated.
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Indian and Pacific ocean, the coarse resolution of the model represents the biggest challenge for the
correct representation of the land-sea climate. In fact, SYNOP observations located over islands are often
not represented as land points in the ERA-Interim database because of the coarse resolution.

In North America, with the exception of the west coast, bias is small in the dry season but tends to
become larger in the wet season because of the challenges of representing the timing of the frontal
systems at the mid-latitudes. Another interesting aspect is the poor performances of ERA-Interim for all
stations in proximity to the western coasts of continents. Inaccuracies in the precipitation representation
have been improved by recent developments of the precipitation model scheme. For instance, it is worth
mentioning that a new diagnostic closure introduced in the convection scheme22 and a new
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parameterization of precipitation formation21 are implemented in the new ECMWF reanalysis ERA-5,
which is due for release in the next future.

Large positive biases also occur along the edges of the Saharan region, east Asia and central America.
Stations falling in islands and coastal areas as well as in South America, West Africa and central Asia
show the largest negative biases. In these zones, the metrics distributions do not change significantly with
the season and its low performance is mostly due to the scarce representativeness of the grid box climate.
The use of the model in these areas should, therefore, be carried out with caution. The departures from
the mean are positively correlated with an average anomaly correlation above 0.60 (threshold of skillful
forecast) in North America, Europe and west Africa. Lower performances are observed in South America,
east and tropical Asia as well as in Scandinavia.

These results should be interpreted by taking into account the representativeness of the ERA-Interim
grid-box when meteorological fields are compared to point-wise measurements. While temperature and
relative humidity fields are more spatially homogeneous, precipitation and wind speed, especially during
convective events, are likely to have larger spatial variations which are difficult to capture on a 80 km grid.
This would justify a general smoothing of the FWI values when compared to local observations. Despite
this obvious limitation, ERA-Interim dataset provides a continuous record of FWI value with a global
coverage that would be simply not achievable with the current observing capabilities (see Fig. 1). As for
any reanalysis dataset, the strength lies in the homogeneity and consistency of the record.

Usage Notes
The spatial distribution of the FWI indices varies greatly across the globe. As weather is the determining
factor, even if values can be calculated everywhere, they are useful only where there is availability of fuel.
Generally, before any processing, areas where vegetation is absent (bare areas, water bodies, permanent
snow and ice) should be masked out. Thanks to the availability of time series global land cover maps, this
is nowadays possible with a fair degree of reliability. In Fig. 4a we show the 90th percentile of the Fire
Weather Index where values are calculated cell by cell for the period 1980–2017 (data for 2018 is
incomplete, available up to end of June, therefore it was discarded). In Fig. 4b we show the same layer
with non vegetated areas masked out using the European Space Agency GlobCover 2009 land cover map
(http://due.esrin.esa.int/page_globcover.php).

Once fire danger reanalysis data has been obtained and masked, these data can be used for a number
of different purposes, some of which have been highlighted in previous sections. The typical use case is
the need to bin the values into danger classes so that danger levels can be compared across places, even if
characterised by climatologically different fire weather. The scientific workflow to achieve this is
conceptually simple but the procedure employs numerous techniques and can be difficult to implement.
For this reason, the authors of this work also implemented the R package caliver9,14 which contains
functions to efficiently manipulate fire danger indices and calculate local fire danger levels. The package
contains vignettes with step-by-step instructions to generate danger levels at large scale, country and
regional level. The vignette named “An introduction to the caliver package”, in particular, contains also a
verification of these danger thresholds using historically observed burned areas (from satellites).

A second use case is the reclassification of forecasts into categorical danger levels (using thresholds
obtained from the reanalysis). This is important in the context of wildfire (and multi-hazard) Early
Warning Systems (EWS) when forestry agencies monitor danger conditions. The persistence of elevated
danger levels could be an influencing factor for decision makers that have the responsibility to put in
place preventive measures and allocate resources on the ground to minimize risks for population and
infrastructures. An example of this re-classification is described in the caliver vignette named
“Verification of fire danger classes”. The same vignette also contains an example of how to validate past
re-classified forecasts against observed Fire Radiative Power from satellite.

References
1. Vélez, R. Causes of forest fires in the Mediterranean Basin. In Proceedings of the risk management and sustainable forestry EFI
conference 42, 35–42 (2002).

2. NOAA NCEI Assessing the U.S. climate in 2017. NOAA’s National Centers for Environmental Information website, https://www.
ncei.noaa.gov/news/national-climate-201712 (2018).

3. Di Fonzo, M. et al. The Quantitative and Monetary Impacts of Forest Fire Crimes. Technical Report compiled as part of the
EFFACE project, University of Rome “La Sapienza” (2015).

4. Van Wagner, C. E. Structure of the Canadian forest fire weather index. Environment Canada, Forestry Service 1333 (1974).
5. Van Wagner, C. E. & Forest, P. Development and structure of the canadian forest fire weather index system. Can. For. Serv.
Forestry Tech. Rep. 35, (1987).

6. de Groot, W. J., Wotton, B. M. & Flannigan, M. D. Wildland fire danger rating and early warning systems. In Wildfire Hazards,
Risks, and Disasters 207–228 (2015).

7. Field, R. D. et al. Development of a global fire weather database. Natural Hazards and Earth System Sciences 15,
1407–1423 (2015).

8. Di Giuseppe, F. et al. The potential predictability of fire danger provided by numerical weather prediction. Journal of Applied
Meteorology and Climatology 55, 2469–2491 (2016).

9. Vitolo, C., Di Giuseppe, F. & D’Andrea, M. Caliver: An R package for calibration and verification of forest fire gridded model
outputs. PloS one 13, 1–18 (2018).

10. Kalnay, E. Atmospheric modeling, data assimilation and predictability. (Cambridge university press, 2003).
11. Power, M. J. et al. Changes in fire regimes since the last glacial maximum: an assessment based on a global synthesis and analysis

of charcoal data. Climate Dynamics 30(7–8), 887–907 (2008).

www.nature.com/sdata/

SCIENTIFIC DATA | 6:190032 | https://doi.org/10.1038/sdata.2019.32 9

http://due.esrin.esa.int/page_globcover.php
https://www.ncei.noaa.gov/news/national-climate-201712
https://www.ncei.noaa.gov/news/national-climate-201712


12. Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal north america using a multivariate
adaptive regression splines (mars) approach. Global Change Biology 15, 578–600 (2009).

13. Boulanger, Y., Gauthier, S. & Burton, P. J. A refinement of models projecting future canadian fire regimes using homogeneous fire
regime zones. Canadian Journal of Forest Research 44, 365–376 (2014).

14. Vitolo, C., Di Giuseppe, F. & D’Andrea, M. caliver R package version 1.0. Zenodo, http://doi.org/10.5281/zenodo.582416 (2017).
15. Vitolo, C. cvitolo/GEFF-ERAI: GEFF-ERAI v0.2 (Version v0.2) Zenodo, https://doi.org/10.5281/zenodo.1472152 (2019).
16. Wang, X. et al. cffdrs: An R package for the canadian forest fire danger rating system. Ecological Processes 6(1), 5 (2017).
17. Van Wagner, C. E. & Pickett, T. L. Equations and fortran IV program for the 1976 metric version of the Forest Fire Weather

Index. Canadian Forestry Service, Petawawa Forest Experimental Station. Information Report PS-X-58 (Chalk River, ON) (1975).
18. Alduchov, O. A. & Eskridge, R. E. Improved magnus form approximation of saturation vapor pressure. Journal of Applied

Meteorology 35, 601–609 (1996).
19. Bromwich, D. H., Wilson, A. B., Bai, L. S., Moore, G. W. & Bauer, P. A comparison of the regional Arctic System Reanalysis and

the global ERA-Interim Reanalysis for the Arctic. Quarterly Journal of the Royal Meteorological Society, 142(695), 644–658
(Wiley Online Library, 2016).

20. Dee, D. P., Uppala, A. B., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S. et al. The ERA-Interim reanalysis: Configuration
and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656),
553–597 (Wiley Online Library, 2011).

21. Haiden, T. et al. ECMWF forecast performance during the June 2013 flood in Central Europe. European Centre for Medium-range
Weather Forecasts (2014).

22. Bechtold, P. et al. Representing equilibrium and nonequilibrium convection in large-scale models. Journal of the Atmospheric
Sciences 71(2), 734–753 (2014).

Data Citations
1. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1068893 (2018).
2. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1068891 (2018).
3. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1068896 (2018).
4. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1068887 (2018).
5. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1068808 (2018).
6. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1065400 (2018).
7. Di Giuseppe, F., Vitolo, C., Krzeminski, B. & San Miguel, J. Zenodo https://doi.org/10.5281/zenodo.1095090 (2018).

Acknowledgements
This work was founded by the EU H2020-Project ANYWHERE (contract 700099) and is part of the
ongoing collaboration between ECMWF and JRC (funded through contract 933710, Copernicus - Fire
Danger Forecast Computation).

Author Contributions
Experimental design: Claudia Vitolo and Francesca Di Giuseppe. Database design: Francesca Di
Giuseppe, Blazej Krzeminski and Jesus Sa-Miguel-Ayanz. Data extraction and manipulation: Claudia
Vitolo. Data visualisation: Claudia Vitolo and Francesca Di Giuseppe. Manuscript writing: Claudia Vitolo
and Francesca Di Giuseppe.

Additional Information
Competing interests: The authors declare no competing interests.

How to cite this article: Vitolo, C. et al. A 1980–2018 global fire danger re-analysis dataset for the
Canadian Fire Weather Indices. Sci. Data. 6:190032 https://doi.org/10.1038/sdata.2019.32 (2019).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/
zero/1.0/ applies to the metadata files made available in this article.

© The Author(s) 2019

www.nature.com/sdata/

SCIENTIFIC DATA | 6:190032 | https://doi.org/10.1038/sdata.2019.32 10

http://doi.org/10.5281/zenodo.582416
https://doi.org/10.5281/zenodo.1472152
https://doi.org/10.5281/zenodo.1068893
https://doi.org/10.5281/zenodo.1068891
https://doi.org/10.5281/zenodo.1068896
https://doi.org/10.5281/zenodo.1068887
https://doi.org/10.5281/zenodo.1068808
https://doi.org/10.5281/zenodo.1065400
https://doi.org/10.5281/zenodo.1095090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

	A 1980&#x02013;2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices
	Background & Summary
	Methods
	Code availability

	Data Records
	Table 1 
	Figure 1 Map of SYNOP stations.
	Technical Validation
	Algorithm validation

	Figure 2 Spatial distribution of the model bias.
	Comparison with observed FWI

	Figure 3 Spatial distribution of the anomaly correlation of the model.
	Table 2 
	Figure 4 90th percentile of FWI.
	Usage Notes
	REFERENCES
	REFERENCES
	This work was founded by the EU H2020-Project ANYWHERE (contract 700099) and is part of the ongoing collaboration between ECMWF and JRC (funded through contract 933710, Copernicus - Fire Danger Forecast Computation).Design Type(s)longitudinal study design
	ACKNOWLEDGEMENTS
	Design Type(s)longitudinal study design &#x02022; data integration objectiveMeasurement Type(s)wildfireTechnology Type(s)digital curationFactor Type(s)temporalinterval &#x02022; geographic locationSample Characteristic(s)Earth (Planet) &#x02022;�forestAdd
	Additional Information




