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ABSTRACT

A global fire danger rating system driven by atmospheric model forcing has been developed with the aim of

providing early warning information to civil protection authorities. The daily predictions of fire danger con-

ditions are based on the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian

Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating sys-

tems. Weather forcings are provided in real time by the European Centre for Medium-Range Weather Fore-

casts forecasting system at 25-km resolution. The global system’s potential predictability is assessed using

reanalysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 yr of observed

burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are

good predictors to highlight dangerous conditions. High values are correlated with observed fire, and low values

correspond to nonobserved events. A more quantitative skill evaluation was performed using the extremal

dependency index, which is a skill score specifically designed for rare events. It revealed that the three indices

weremore skillful than the random forecast to detect large fires on a global scale. The performance peaks in the

boreal forests, the Mediterranean region, the Amazon rain forests, and Southeast Asia. The skill scores were

then aggregated at the country level to reveal which nations could potentially benefit from the system in-

formation to aid decision-making and fire control support. Overall it was found that fire danger modeling based

on weather forecasts can provide reasonable predictability over large parts of the global landmass.

1. Introduction

Wildfire activity is strongly affected by four factors: fuels,

climate/weather, ignition agents, and people (Flannigan

et al. 2005). Where fuel is available, weather is the most

important factor in shaping fire regimes in many areas of

the world (Flannigan et al. 2009). Fires are a global phe-

nomenon extending from the boreal forests of Canada and

Siberia down to Amazonia and the central African rain

forests. Especially in a savanna ecoclimate, such as the

Sahel and west Australia, fires are recurrent hazards

because of frequent severe drought conditions but also (as

for West Africa) because of agriculture practice (Swaine

1992). Fires also occur in wetter regions such as Southeast

Asia (Thailand, Malaysia, and Indonesia) mostly during

the dry period before the monsoon onset.

Assessments of forest fire danger in countries with

extensive forest cover have for decades relied on a com-

bination of weather information and evaluation of the

vegetation state (Taylor and Alexander 2006). Tradi-

tionally, fire danger is evaluated at observation stations

where weathermeasurements are routinely available and

vegetation status is recorded. The resulting fire danger

rating is then extrapolated to a large but undefined area

surrounding the observation site. Examples of systems

that relay on extrapolation techniques are theU.S. Forest

Service National Fire-Danger Rating System (NFDRS;

Deeming et al. 1977), the Canadian Forest Service Fire

Weather Index Rating System (FWI; Van Wagner 1974,
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1987), and the Australian McArthur (Mark 5) rating

systems (McArthur 1966, 1967; Noble et al. 1980). These

widely used systems provide estimates of fire danger in

terms of fire ignition and behavior, energy release, and

rate of spread (San-Miguel-Ayanz et al. 2003).

The European Forest Fire Information System

(EFFIS; Camia et al. 2006) is currently being developed

in the framework of the Copernicus Emergency Man-

agement Services to monitor and forecast fire danger in

Europe. The system provides timely information to civil

protection authorities in 38 nations across Europe (for

details, see http://forest.jrc.ec.europa.eu/effis/abouteffis/

effis-network/) and mostly concentrates on flagging re-

gions that might be at high danger of spontaneous igni-

tion because of persistent drought. It relies on the

calculation of theNFDRS, FWI, andMark 5matrices and

uses medium-range (1–10-day lead time) weather fore-

casts instead of observations to extend the advance

warning. For some nations and regions, case studies have

already shown the advantage of such an approach: Roads

et al. (2005) and Mölders (2008, 2010) used regional nu-

merical weather inputs to drive the NFDRS system

showing good prediction skill up to one season ahead, and

Preisler et al. (2009) used a combination of forecast

model outputs and satellite observations to extend the

spatial information provided by station-based fire index

calculations.

A challenge in building such a warning system is that it

requires the availability of global fields such as fuel maps,

vegetation characteristics, and topography. Information

such as the ‘‘greenness’’ of the vegetation needs to be

available in real time and on a global scale at the desired

resolution to approximate the traditional human judg-

ment. The quality of such an automated system will ul-

timately depend on two factors: (i) the accuracy of the

modeling components that translate the status of the

vegetation into fire danger and (ii) the accuracy of

the driving fields in predicting the real atmospheric con-

ditions. A model-based evaluation can be used to define

the upper boundary of the achievable skill of such a sys-

tem. This is often called potential predictability, and its

assessment is the subject of this paper.

The driving data need to be from a homogeneous

global sample to assess potential predictability, which in

turn allows a global comparison of fire index calcula-

tions without dependency on forecast skill. This can, for

example, be achieved by using atmospheric reanalysis.

These datasets are created by combining model and

quality-controlled observations for past conditions in a

statistically optimal way by means of an assimilation

scheme (Tang et al. 2008). A reanalysis provides a dy-

namically consistent estimate of the climate state at each

time step and can, to a large extent, be considered as a

good proxy for observed meteorological conditions.

Being a model integration, it has the added benefit to

also provide a dynamical set of fields, including variables

that are not generally observed. How close reanalysis

output is to real observations depends on the amount and

quality of observations available, the accuracy of themodel

used, and of the assimilation scheme chosen (Dee et al.

2011). Even with these caveats in mind, fire danger indices

calculated from a reanalysis dataset are less affected by

uncertainties in the atmospheric forcing when compared

with indices calculated from forecast fields that are the

result of sole model integrations. Therefore, reanalysis fire

indices can be compared with observed occurrence of fire

to understand the potential predictability of the modeling

components in detecting fire danger and ultimately to

highlight the limitations of those components themselves.

In this paper we concentrate on the prediction skills of

themodeling components of theEFFIS system, that is, the

Global ECMWF Fire Forecasting (GEFF) model. The

GEFF model provides outputs in terms of fire danger

indices that are then distributed to theEFFIS network and

used among the European civil protections. Although

important for an operational system, we will not detail

how the information produced by GEFF are translated

into fire suppression actions at the European central

level and in the national agencies that are part of the

EFFIS network. The objective of this work is to in-

troduce the modeling components and identify regions

where the system shows high and low potential pre-

dictability of fire danger.

2. Methods

a. Fire danger metrics

Each of the three fire rating systems implemented into

the GEFF model provides a comprehensive set of outputs

that characterize different aspect of fire conditions. It is

therefore important to clarify which aspect related to fire is

going to be analyzed in this work. The primary scope of the

EFFIS is to provide daily information of fire danger, which

is intended as a general term to express an assessment of

both fixed and variable factors of the fire environment that

determine the ease of ignition, rate of spread, difficulty of

control, and fire impact as defined by theNationalWildfire

Coordinating Group (http://www.nwcg.gov/term/glossary/

fire-danger). Fire danger has, therefore, several compo-

nents, and the rating indices chosen should be a combined

metric expressing the probability of ignition, the speed and

likelihood of spread, and the fuel availability (sustain-

ability of the event).

Among all the fire indices that are outputs of the GEFF

model, the FWI and the fire danger index (FDI) from the
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McArthur Mark 5 system are selected as good indicators

of fire danger containing both a component of fuel avail-

ability (drought conditions) and a measure of ease of

spread. In the NFDRS, two indices could be used to in-

dicate fire danger: the ignition component (IC) and the

burning index (BI). Both of these indices have a compo-

nent of spread and a component related to the available

burning energy. Since these indices are strongly dependent

on the fuel type and the local atmospheric conditions, they

measure local short time variation of burning conditions as

opposed to long-term danger conditions. Looking at the

correlation between the BI and the IC and both the FWI

and the FDI (not shown), it was found that the IC has a

better correlation with the FWI and the FDI and was

therefore selected as the best index within the NFDRS to

compare with the other two fire danger rating systems.

In this studywe limit the analysis of fire predictability to

these three indices so as to provide a concise analysis of

the generic fire danger predictability. Keep in mind,

though, that in the actual operational implementation of

EFFIS, which uses real-time forecasts as atmospheric

forcings, once dangerous areas are identified, a more de-

tailed analysis can be performed to characterize the event

in terms of, for example, expected containment actions

required. (In operational practice, this is usually achieved

by gathering additional information provided by all of the

other indices that are calculated as a part of the fire danger

rating system provided in Table 2, which is described in

more detail below.)

1) NATIONAL FIRE-DANGER RATING SYSTEM

In the NFDRS, the characteristics of fire danger are

functions of fuel type, topography, andweather (Bradshaw

et al. 1983; Cohen and Deeming 1985; Burgan 1988). The

model explicitly calculates the moisture content of dead

and living vegetation.

Dead fuel is divided into classes according to its fast or

slow response to the changes in atmospheric tempera-

ture and humidity forcing, while live fuel is divided into

herbaceous and woody shrubs. The ignition component

is a rating of the probability, between 0 and 100, that a

firebrand will cause a fire requiring a suppression action.

Its value depends on the moisture content of the fastest

responding fuel and the available fuel energy stored as a

consequence of the lack ofmoisture in the deeper layers.

2) FIRE WEATHER INDEX SYSTEM

Similarly to theNFDRS, the FWI describes the effects of

atmospheric temperature, humidity, precipitation, and

wind, first on the fuelmoisture content and consequentially

on the fire behavior and occurrence (Van Wagner and

Pickett 1985; Stocks et al. 1989). While the NFDRS al-

lows the user to specify different fuel types, the FWI is

specifically calibrated to describe the fire behavior in a

standard jack pine stand Pinus banksiana typical of the

Canadian forests (Van Wagner 1974). Despite this limita-

tion, the index has successfully been used in countries

where vegetation is dissimilar to Canada (Taylor and

Alexander 2006) such as Australia (Cruz and Plucinski

2007), New Zealand, andMalaysia (Taylor and Alexander

2006) and can therefore provide useful information

worldwide. In the FWI system, the fuel moisture content is

calculated with different codes depending on the fuel

consistency. Litter and fine fuels occupy the first fuel bed

layers. Its moisture content is calculated using the fine fuel

moisture code (FFMC). The moisture content of the

loosely compacted organic layers of moderate depth is in-

stead given by the duff moisture code (DMC), while the

moisture of deep, compact organic layers is evaluated using

the drought code (DC). From these diagnostic, weather-

driven fuelmoisture calculations, the FWImodel calculates

fire behavior indices in terms of rate of fire spread [initial

spread index (ISI)] and fuel available for combustion

[buildup index (BUI)]. The FWI integrates current ISI and

BUI to produce a unitless index of general fire intensity.

3) MCARTHUR’S FOREST FIRE DANGER METER

(MARK 5)

The McArthur’s Forest Fire Danger Meter (Mark 5)

was developed to monitor fire danger throughout eastern

Australia. Unlike the other two indices in this model,

there is not an explicit description of the evolution of

moisture in different fuel types. The formulation inNoble

et al. (1980) uses atmospheric conditions to evaluate a

generic component representing fuel availability called

the drought factor (DF). TheDF is used to then calculate

the FDI, which provides an assessment of fire danger due

to the combined effect of drought condition and fuel

availability. The drought factor is given a number between

0 and 10 and represents the influence of recent tempera-

ture and rainfall events on combustible material avail-

ability. It is partly based on the soil moisture deficit, which

is commonly calculated using the Keetch–Byram drought

index (KBDI; Keetch and Byram 1968), which measures

the effects of seasonal drought on fire danger. The actual

numeric value of this index is an estimate of the amount of

precipitation needed to bring the soil back to saturation.

In its original formulation, the KBDI only deals with the

top 8 in. (1 in. 5 2.54cm) of the soil profile, meaning the

maximum KBDI value is 800.1 KBDI is sometimes used

as a fire danger indicator in itself. Its relationship to fire

danger is that as the index value increases, the vegetation is

1 8.00 in. of precipitation would be needed to bring the soil back

to saturation.
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subjected to increased stress due to moisture deficiency,

living plants die and become fuel, and the duff/litter layer

becomes more susceptible to fire (Preisler et al. 2004).

b. Fire danger reanalysis

The analysis system (Fig. 1) was designed using weather

information from the ERA-Interim reanalysis system

of the European Centre for Medium-Range Weather

Forecasts (ECMWF) (Dee et al. 2011). ERA-Interim

is the latest of the ECMWF reanalysis products and

stretches from 1 January 1979 and is extended forward in

near–real time. It employs a sequential 4D-var data as-

similation scheme that ensures the optimal consistency

between the available observations and the model back-

ground (Courtier et al. 1994). The reanalysis data have an

original spatial resolution of around 80km and have been

bilinearly interpolated to a regular latitude–longitude grid

of 0.258 to be comparable with the available observational

dataset of fire activity. Therefore, ERA-Interim has

quite a coarse resolution and does not represent small-

scale processes that might be responsible in establishing

local favorable conditions for small fires. For this reason,

most of the following analysis will concentrate onmedium

to large fire events (.2500ha).

In addition to these daily data, the GEFF model also

relies on constant fields (Fig. 2). There are three tiers of

input data to the model. Tier 1 comprises the so-called cli-

matological fields that are precomputed and kept invariant

during the runs. Examples are the land–sea mask, the veg-

etation cover, and the orography. Tier-2 data are daily av-

eraged fields such as 24-h accumulated precipitation,

minimum and maximum daily temperature, and humidity.

These are calculated from the 3-hourly outputs of ERA-

Interim. Tier-3 data are atmospheric fields at a nominal

1200 local time when the condition for wildfire is most fa-

vorable. A model integration at any nominal time will

simulate the atmospheric conditions at a different local time

depending on the location. A temporal and spatial collage

of 24-h time model simulations is performed to produce a

snapshot at 1200 local time. Thus temperature and relative

humidity fields are cut into 3-hourly time strips using the

closest 3-h forecast output and then concatenated together

so that the final field is representative of the conditions

around the local noon within the 3-h resolution available.

Using this method, the driving forcings are a composite of

forecast outputs at different lead times in a 24-h interval and

could therefore have different forecast accuracy. This in-

consistency is assumed insignificant given the limited dif-

ference in forecast skills in a 24-h lead time range (Buizza

et al. 1999).

The schematic in Fig. 2 shows how these three tiers of

forcings are linked to the various output components of

the fire index system. The summary of the data input

needed is given in Table 1, while a detailed explanation

of the preprocessing needed to obtain the climatological

fields (tier 1) is provided in the appendix. Since the

various components of the three fire rating systems are

calculated from the same set of forcings, they are di-

rectly comparable. Although this work concentrates on

fire danger, the system also provides a comprehensive

set of fields modeling vegetation stress, probability of

ignition, and fire behavior. A list of these output vari-

ables of the system is shown in Table 2.

FIG. 1. Schematic of the reanalysis setup with boxes representing

models, triangles showing processes, and diamonds used for prod-

ucts. The operational numerical weather prediction reanalysis is

used to drive the GEFF model to provide an analysis of fuel mois-

ture values and fire weather indices. All atmospheric variables un-

dergo preprocessing before application to the fire model, which then

provides analysis of fire danger indices given in Table 2, below.
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The reanalysis dataset for fire danger was calculated

starting from 1 January 1979 and run for 36 years with a

daily time step following the availability of ERA-

Interim. Since the initial conditions were set using an

idealized state the fire variables suffer from the so-called

spinup in the first months of the forecasts as the model

drifts to its own equilibrium state. The first year of

simulation is therefore discarded from further analysis.

The resulting fire analysis does not incorporate obser-

vations in contrast to atmospheric analysis systems.2

For this reanalysis, all of the fire indices were set to

zero (and the moisture content of the fast-responding

vegetation classes was raised to 35% in the NFDRS)

if snow was on the ground or the daily precipitation is

above 1.5mmday21. Areas where vegetation fuel is not

available were masked out (Fig. A6 in the appendix).

c. Observations

National inventories of wildfire activities exist in many

countries (e.g., Westerling et al. 2006) but they do not

have the global coverage and/or the extended record

needed for a validation of a fire danger system at a global

scale. Satellite observations can supply a valid alternative

especially as they cover remote areas where in situ ob-

servations are sparse (Flannigan and Vonder Haar 1986;

Giglio et al. 2003; Schroeder et al. 2008). Satellite data

have been used to monitor biomass burning at regional

and global scales for more than two decades using algo-

rithms that detect the radiative emission from active fires

FIG. 2. Schematic of the GEFF model components with the input and output connections. Three fire danger rating systems (FWI,

NFDRS, and Mark 5) are implemented using the same atmospheric forcings. Input data are grouped in three tiers: Tier-1 data are

climatological fields that are precomputed and kept invariant during the runs, tier-2 data are daily averages, and tier-3 data represent

instantaneous values at a nominal 1200 local time.

2While the FWI andMark 5 systems are diagnostic formulations

that could not benefit from the assimilation of observation, the

NFDRS includes prognostic equations for the fuel moisture con-

tent that could, in theory, ingest available measurements provided

an assimilation scheme were available. Nevertheless, direct ob-

servations of fuel moisture are only collected in isolated research

projects thus not available at the spatial scale required for global

applications.
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at the time of satellite overpass and in the last decade by

using burned area algorithms that directly map the

spatial extent of the area affected by fires (Wooster

et al. 2003; Giglio et al. 2006).

The burned area dataset of the Global Fire Emissions

Database (GFED4) combines several satellite products

in a homogeneous time sequence of events (Giglio et al.

2013) from August 2000 to the present. Among esti-

mations of fire emission, it provides daily burned area

fractionwith a 0.258 resolution.GFED4 combines 500-m

MODIS satellite burned area maps with active fire data

from the Tropical Rainfall MeasuringMission (TRMM)

TABLE 1. Summary of atmospheric and surface forcings input to the GEFF system.

Variable Time Processing Data source–reference

Climatic zones Invariant Digitalization and spatial interpolation Data from images available in

Chen and Chen (2013)

Fuel model Composite obtained from JRC The dataset can be downloaded at

http://forobs.jrc.ec.europa.eu/

products/glc2000/glc2000.php

Slope Slope classes calculated from IFS climatological

slope field

Calculated from the high-resolution

GTOPO30 dataset following

Baines and Palmer (1990) and

Lott and Miller (1997)

Vegetation cover Combination of high vegetation and low vege-

tation from IFS climatological fields

Built from the GLCC dataset de-

scribed in Loveland et al. (2000)

Vegetation stage Annual

climatology

See appendix for details Database from MODIS data

(Myneni et al. 2002) processed as

in Boussetta et al. (2013)

Mean cumulative annual

precipitation

Annual cumulative precipitation averaged over

the period 1980–2014

ERA-Interim (Dee et al. 2011)

Max/min daily temperature Daily value Max, min, and number of hours calculated from

the 3-hourly model outputs

ERA-Interim (Dee et al. 2011)

Max/min daily relative

humidity

Precipitation duration (h)

Cloud cover Local noon Temporal interpolation in a 24-h forecast

interval

ERA-Interim (Dee et al. 2011)

Relative humidity

Temperature

Wind speed

TABLE 2. Summary of outputs available from the GEFF system. The indices used in this paper are in boldface type.

Rating system Variable Description

FWI Fine fuel moisture code (FFMC) Numerical rating of the moisture content of litter and other cured fine

fuels.

Duff moisture code (DMC) Numerical rating of the average moisture content of loosely compacted

organic layers of moderate depth.

Drought code (DC) Numerical rating of the average moisture content of deep, compact or-

ganic layers.

Initial spread index (ISI) Numerical rating of the expected rate of fire spread.

Buildup index (BUI) Numerical rating of the total amount of fuel available for combustion.

Fire weather index (FWI) Numerical rating of fire intensity. It is suitable as a general index of fire

danger.

Mark 5 Keetch–Byram drought index (KBDI) Metric of seasonal drought severity and fuel availability.

Drought factor (DF) Metric of fuel availability as determined by seasonal severity and recent

rain effects.

Fire danger index (FDI) Numeric rating related to the chances of a fire starting, its rate of spread,

its intensity, and its difficulty of suppression.

NFDRS Spread component (SC) Forward rate of spread at the head of the fire in feet (1 ft 5 30.5 cm)

per minute.

Energy release component (ERC) Potential available energy at the head of the fire.

Ignition component (IC) Numerical rating of the probability that a fire that requires suppression

action will result if a firebrand is introduced into a fine fuel complex.

Burning index (BI) Metric of flame length in feet at the head of a fire.
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Visible and Infrared Scanner (VIRS) and the Along-

Track Scanning Radiometer (ATSR) family of sensors.

The daily burned area dataset is used in this paper to

validate the relationship between the modeled fire

danger and the observed occurrence of fire episodes.

Fire events are defined when the burned area fraction is

larger than 0.1 (10% of the pixel area). Considering the

resolution of the dataset, this choice implies that we

‘‘activate’’ a cell when fires have an extent of at least

2.5 km2 (2500ha). Hantson et al. (2015) show that fire

size follows a negative power-law distribution. Large

fires (.104 ha) are orders of magnitude less frequent

than small ones (,102 ha). Since the fire mask is con-

structed on fires larger than 2500ha in our analysis, we

neglect events smaller than this size, which are the most

frequent. On the other hand, note that ERA-Interim has

an original resolution of 80 km and it is then interpolated

on to a 25-km resolution to be comparable with the

observed dataset. Therefore, small-scale conditions that

can impact fire danger at the local level are not explicitly

represented by the weather forcings used. The pre-

diction of fires at these unresolved scales could prove

challenging. To understand the impact of fire sizes on

the overall prediction skill of the system, anothermask is

created that takes into consideration only fires smaller

than 2.5 km2 by defining the mask when the condition

0 , burned area , 0.1 is met. (This mask for small size

fires will be used only for the generation of Fig. 9, which

is described below).

Figure 3 shows the number of observed fire days dur-

ing the 4900 days covering the period August 2000 to

December 2013. All fires are included, even the ones in-

duced by human actions, which, despite requiring favor-

able climatic conditions to be sustained, are not explicitly

modeled by the fire indices algorithms used in this paper.

d. Normalization

The three indices exhibit different ranges of values,

which makes a direct comparison difficult and presents a

barrier to integrate this information in an early warning

application. The global cumulative distribution function

(CDF) for all values above zero in the 11 yr fromAugust

2000 to December 2013 is shown in Fig. 4. It shows, for

example, that FWI$ 40 occurs in only 20% of the cases

while for the same value a frequency of 5% of the cases

for the Mark 5 FDI and NFDRS IC is estimated.

To make the numerical values of the indices directly

comparable a transformation is performed on the raw

index value I raw to obtain a normalized index Inorm. This

is simply done by means of the inverse of the CDF

function:

FIG. 3. Number of active fire days recorded in theGFED4dataset during the 4900 days covering

the period from August 2000 to December 2013.

FIG. 4. CDF collecting all cases above 0 for the three indices. For

any valueX of a given index, the CDF represents the total number

of cases for which the index was smaller than X. For example,

FWI $ 40 occurs in only 20% of the cases.
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I
norm

5CDF21
I (I

raw
) . (1)

In this way, all indices are normalized over [0, 1] using

the maximum and minimum (above 0) computed over all

days of the available time series. Note that Fig. 4

represents a global mean and has been reported for doc-

umentation purposes only. At a single site these curves

might be different since they the range of possible fire

danger conditions for that location.

e. Verification methods

1) DISCRIMINATION SKILL

The IC, FWI, and FDI provide information on the se-

verity of drought conditions and the availability of fuel

and thus the probability of spontaneous ignition occur-

rence. The numerical value should be interpreted proba-

bilistically meaning that high values are no guarantee of

actual fire occurrence. A desirable quality for the pur-

poses of fire action planning for any system is its capability

to discriminate between fire occurrence and nonevents.

Therefore, one would expect high values of the indices to

predict fire and low values otherwise. This information can

be gathered using a discrimination diagram, that is, plotting

the conditional distributions of the forecasts. For binary

events (fire/no fire), this diagram plots the conditional

distribution of the forecasts given that the event occurred

and the conditional distribution of the forecasts given that

the event did not occur. Ideally, the two distributions

should be separated from one another, becoming two

distinct spikes for perfect prediction.

2) FIRE DETECTION SKILL

The calculation of fire detection skill has to take into

consideration that fires are events with a low frequency

(rare events) (Coles et al. 1999; Ferro 2007; Ferro and

Stephenson 2011). The assessment of the quality of the

prediction is therefore complicated by the fact that

measures of forecast quality typically degenerate to

trivial values as the rarity of the predicted event increases

(Coles et al. 1999). This is easily understood by consid-

ering the contingency table for the observed and pre-

dicted fire events in Fig. 5b. Once the occurrence of the

event is defined for the forecast (e.g., when I $ 4th

quartile) it is possible to count the number of hits (A),

misses (B), false alarms (C), and correct negatives (D) in

comparison with what was observed. The resulting table

can then be used to derive classic skill scores such as the

probability of detection POD5A/(A1C), or the Brier

score BS5 (A1B)/(A1C), to name just two. Coles

et al. (1999), Ferro (2007), and Ferro and Stephenson

(2011) showed how these common skill scores tend

to vanish as the base rate of observed events

(A1C)/(A1B1C1D)/ 0 regardless of the actual

forecast skill. Stephenson et al. (2008) and Ferro and

Stephenson (2011) proposed a series on nonvanishing

FIG. 5. (a) A graphical representation of the fuzzy logic that is applied in the verification analysis. The en-

largement around the verification pixel is designed to take into account the value of a correct forecast that is offset

spatially from the original verification pixel. A unique contingency table is constructed using the nine pixels instead

of only the verification pixel. This means that any hits in the neighborhood will count toward enhancing the EDI

value in the verification grid box. (b) Contingency table used for the verification of binary events (occurred/did not

occur). The numbers of observed and predicted events in any of the four categories (hit, miss, false alarm, and

correct negative) are used to derive skill scores.
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measure for rare events. The extremal dependency index

(EDI) is less dependent on the base rate and more difficult

to hedge [see Ferro and Stephenson (2011) for an extensive

discussion on the EDI properties]. EDI provides a skill

score in the range [21, 1]. EDI takes the value of 1 for

perfect forecasts and 0 for random forecasts. It is .0 for

forecasts that have hit rates that converge to 0, and slower

than those of random forecasts, and can be negative in the

opposite situation. Therefore, the system beats a random

forecast for values. 0 and could be considered skillful.

3) FIRE LOCALIZATION

The accuracy in the localization of an event might not

be themost important aspect for an earlywarning system.

High fire danger forecast in the neighborhood of an ob-

served event still adds useful information for the scope of

emergency planning and should therefore be positively

rated. To take this aspect into account the prediction

score calculation follows a fuzzy approach using a spatial

filter that aggregated a matrix of 33 3 neighboring pixels

around the verification point (Fig. 5a). One contingency

table is created from the nine time series. This means that

any hits in the neighborhood will count toward the EDI

value in the verification grid box.

3. Results

a. Comparing indices

The combined probability density function of any index

combination (Fig. 6) shows the different behavior of the

FWI, Mark 5, and NFDRS systems. The FWI and FDI

variables are calibrated to represent the inflammability

of a specific vegetation condition (i.e., boreal forest).

Conversely, the NFDRS explicitly represents the evolu-

tion of the vegetation moisture content in different eco-

systems, specifically the 20 fuel moisture classes given in

Table 3. The ignition component of the NFDRS is cal-

culated for different vegetation regimes and is then

compared with the two other indices representing a con-

stant vegetation. This difference is probably responsible

for the larger spread in the joint probability function ob-

served when NFDRS is used. The contour lines show the

same probability density function but using a reduced

dataset where at least one fire event was recorded in the

GFED4 dataset (see Fig. 3). Apart from the need of re-

scaling, the indices show a very good correlation among

each other when a linear model is used to calculate the

correlation coefficient r. This proves that overall they are

representative of the same phenomenon.

b. Global predictability

The potential predictability evaluates the capability of

the system to effectively flag regions and periods as at

FIG. 6. Two-dimensional probability density functions for the fire

danger indices implemented: (a) FWI vs Mark 5, (b) NFDRS vs

FWI, and (c) NFDRS vs Mark 5. Shaded colors are used for all

points in the dataset, while contour lines are used for a reduced

dataset that includes only where at least one fire event was re-

corded in the GFED4 dataset. The sharper the distribution and the

higher the regression coefficient R are, the closer is the agreement

between the two indices.
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high (low) danger when actual fire events (nonevents)

were observed. The discrimination diagram in Fig. 7

shows the conditional distributions of the forecasts

whether the event did or did not occur. If the two dis-

tributions are well separated, the indices have a good

discrimination capability and the information can be

useful in an early warning system. Only two distinct

spikes would be present in the case of a perfect forecast.

In roughly 80%of the cases, the indices are able to flag

as above normal (i.e., .50% of climatological value)

cases that developed in fire events and flag as below

normal (i.e., #50% of climatological value) situations

that did not develop into fire events. Remarkably, all the

fire indices are also able to predictmore severe events. A

fire developed 60% of the time in which values were in

the upper percentile (above 75% of all cases). FWI and

Mark 5 are extremely similar in their statistical behav-

iors because of the similar nature of the modeling

components. The IC is slightly more cautious in pre-

dicting fire events but, in contrast to the other indices,

provides a lower false-alarm rate.

c. Regional fire danger detection

The global assessment in the previous section is useful

to gain an appreciation of the average potential capa-

bility of the system. A regional analysis is necessary to

understand in which countries/regions the automatic

system has enough predictive skill to be useful to plan

fire control actions. The regional analysis is performed

using the fuzzy pixel logic described before. Two veri-

fications are performedwhen forecast events are defined

for the index being larger than the first upper quartile

($50%; Fig. 8): 1) using the standard fire mask (fires .
2500ha) and 2) using the fire mask for small fires only

(Fig. 9).

Figure 8 shows that the predictions are very good in

regions of the planet covered by boreal forests (taiga

ecosystems that cover nations such as Russia, Canada,

and the Nordic countries). Since the boreal forest zone

consists of a mixture of conifers (white and black spruce,

jack pine, tamarack, and balsam fir) it is not surprising

that the FWI performs best among the indices in these

areas as it is specifically calibrated for this vegetation

cover. Prediction skill is higher in the Canadian boreal

shield west ecozone (Stocks et al. 2002) where large fires

occur frequently when compared with the Canada’s

montane cordillera ecozone (Stocks et al. 2002) where

fires are numerous but tend to be smaller. Northern

boreal Eurasia and Siberia in particular present a very

TABLE 3. List of fuel types used for the NFDRS and whose

geographical location is given in Fig. A6, described in more detail

in the appendix.

A Western annual grass

B Chaparral

C Pine grass savanna

D Southern rough

E Hardwood litter

F Intermediate brush

G Short needle, heavy dead

H Short needle, normal dead

I Heavy slash

J Intermediate slash

K Light slash

L Western perennial grass

N Sawgrass

O High pocosin

P Southern pine

Q Alaska black spruce

R Hardwood litter, summer

S Tundra

T Sagebrush–grass

U Western pines

Water Water

Barren Barren

Marsh Marsh

Ice Snow and ice

Urban Urban

Agriculture Agriculture

No Data No data

FIG. 7. Discrimination diagrams for the three indices showing the probability of the index being in any of the four quartile intervals when

a fire event occurred (red histogram) and when it did not (blue histogram). Only two distinct spikes would be present in the case of

a perfect forecast.
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FIG. 8. EDI for the three rating systems. The EDI skill score is calculated using the fire mask derived from the GFED4

dataset. A fire is forecast when the corresponding index value is above the first upper quartile ($50%) of its distribution.

The verification contingency table (Fig. 5b) for the EDI is calculated considering the spatial fuzzy analysis depicted in

Fig. 5a, which provides a 33 3 pixel spatial smoothing. Therefore, while the analysis is performed on the original grid of

25 km, the effective resolution is 75 km. EDI takes a value of 1 for perfect forecasts and 0 for random forecasts. Therefore,

the system beats a random forecast for values above 0 and could be considered to be skillful.
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FIG. 9. As in Fig. 8, but focusing only on small fire events (,2500 ha).
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similar range of fire weather conditions as in boreal

Canada. In these regions the vegetation is quite homo-

geneous and the values of the indices are controlled

mostly by the weather forcings. It has to be noted,

though, that fire regimes can be very different, with the

Siberian fires tending to be not as large as in Canada,

relatively frequent, and having moderate to high in-

tensity (de Groot et al. 2013).

In Australia, fires can develop in two very different

environments. They can either burn in mountainous or

alpine areas, which are usually densely forested, or they

can start along flat plains or areas of small undulation,

predominantly covered in grasses or scrubland. In the

first case fire episodes can be extremely intense and long

lived, while in the second case fires move quickly, fueled

by high winds in flat topography, quickly consuming the

small amounts of fuel/vegetation available (Bradstock

et al. 2002). The predictive skill of the GEFF system

seems to be able to distinguish between these two re-

gimes and performs better in forested areas. Indeed,

Luke andMcArthur (1978) suggest a modification of the

FDI index for grassland that could improve the pre-

diction in this ecoclimate, although it is not im-

plemented in the GEFF system.

Fires in Southeast Asia—comprising the countries of

Thailand, Malaysia, and Indonesia—are usually human

caused for the purposes of gathering nontimber products

and agriculture or, as in Indonesia, due to deforestation

for establishing plantations. The fire seasons in this region

are controlled by rainfall seasonality associated with the

monsoon, which produces an annual, or in some regions

semiannual, wet–dry cycle. The NFDRS system requires

quite an accurate knowledge of the vegetation cycle.

Vegetation green-up and curing are, in the original im-

plementation, human triggered, while in GEFF they are

read from a mean climatological database (see the ap-

pendix). This highlights the shortcoming of a global im-

plementation for a model that highly relies on local

knowledge. The NFDRS would probably be much more

locally accurate if real-time data for the vegetation stage

were to be provided.

In the Mediterranean region, vegetation is dominated

by a combination of shrublands and low forests. Persistent

dry climatic conditions in summer favor the establishment

of intense fire seasons that are only limited by the avail-

ability of fuels (Pausas and Paula 2012). Despite the dif-

ferent types of vegetation than are found in the boreal

forests, all the indices perform remarkably well in marking

fire events in these ecosystems, especially in the southern

part of Spain, Greece, and Italy. The climate in Central

Europe is subcontinental temperate, and the vegetation is

characterized mostly by deciduous broad-leaved forests.

The peak of the fire activity tends to be just after snowmelt

and before leaf flushing and is driven more by short-term

dryness of surface soil layers than long-term drought

(Wastl et al. 2013). The potential predictability of fires is

lower than in the Mediterranean region.

Finally, the large forests of SouthAmerica and central

Africa are characterized by large seasonal fires mostly

initiated by agricultural burning. The peak of the fire

season is between August and September, which co-

incides with the end of the dry season. Given the vast

availability of fuel, the main cause of fire danger is the

establishment of drought conditions, which are well

predicted by all indices.

The global analysis in Fig. 8 is repeated using themask

for small fire (Fig. 9) to highlight that the EDI skill score

is degraded everywhere on the planet by about 20% on

average. The coarse resolution of ERA-Interim cannot

resolve small-scale variations in the weather parameters

thatmight result in the development of smaller fires. The

relationship between weather anomalies and fire events

is therefore weakened.

d. Aggregation at country level

EFFIS (Camia et al. 2006) has been designed with the

main aim of providing decision support for the man-

agement of fire danger at European and national level.

Wildfires are clearly a cross-border phenomenon, but

for decision-making support, an aggregation of forecast

skill to a national level can be useful to understand in

which nation GEFF products could also be employed.

For every nation, Fig. 10 shows the surface that was af-

fected by at least one fire during the observational pe-

riod as a percentage of the nation’s ground area. The

country inventory and the surface-area data are taken

from Esty et al. (2008) and are not available for a few

nations such as Afghanistan and Serbia. For very small

countries such as Denmark and Belgium, the coarse

25-km2 resolution of the observed dataset can also lead

to misleading overestimations of the percentage of

burned area. Fires might have occurred with smaller

extent but are then aggregated to a larger grid at the

resolution of the dataset and in some cases the grid is

too coarse to ‘‘resolve’’ small nations. However, for

most of the countries, the plot provides a reliable

measure of representation by providing system skill

at a country level. For very low coverage (#10% of the

country surface), the given average fire index skill

might not be a meaningful indication of the real per-

formance of GEFF in that country. This is especially

true for nations with very heterogeneous vegetation

covers and fire activities.

Figure 11 shows the mean skill of the three fire rating

systems aggregated at a country level. Keeping in mind

the information provided by Fig. 10, it shows that the
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system is able to beat the randomprediction in almost all

nations. All indices perform better where fire is moisture

limited, such as the boreal forests, where fires are fuel

limited (e.g., in the savanna).

4. Conclusions

In this paper, we have presented an operational global

fire danger system that relies exclusively on forcings

from atmospheric modeling. The Global ECMWF Fire

Forecasting system was developed from the collabora-

tion between the European Joint Research Centre

(JRC) and the ECMWF. GEFF is the modeling com-

ponent of the European Forest Fire Information System

(Camia et al. 2006), which is being developed in the

framework of the Copernicus Emergency Services to

provide a platform of shared information on fire danger

to civil protection authorities of 38 nations across

Europe. GEFF calculates daily prediction up to 10 days

ahead of all the indices from the U.S. Forest Service

NFDRS, the Canadian Forest Service FWI, and the

Australian McArthur (Mark 5) rating systems using

the ECMWF forecasting system as the atmospheric

forcings.

This study introduced the modeling components of

the GEFF system and has assessed its maximum po-

tential skill to identify conditions of fire danger. To this

end the analysis has employed meteorological forcings

from the latest ECMWF reanalysis dataset (Dee et al.

2011), ERA-Interim, instead of the more uncertain

forecast fields. Reanalysis products can still be biased

relative to observations, but they have the advantages

over raw weather station data by providing spatially and

temporally continuous records consistent with the

physical constraints imposed by a numerical weather

prediction model and an optimal data assimilation al-

gorithm. Reanalysis fire indices can therefore be com-

paredwith observed occurrence of fire to understand the

potential predictability of the modeling components and

where GEFF could provide useful information for fire

control. The analysis has been performed interpolating

the original 80-km ERA-Interim grid to a regular

latitude–longitude grid of 25 km to match the available

burned area dataset. ERA-Interim has therefore quite a

coarse resolution and does not represent small-scale

processes thatmight be responsible for establishing local

favorable conditions for fire danger. For this reason, the

comparison has been limited to medium to large fire

events ($2500ha).

In large areas of the planet all of the selected indices

from the three fire danger rating systems are able to

identify dangerous conditions for fire events. Where

fuel availability is not limited—such as in the boreal

forests, the Mediterranean region, South America, and

central African regions—fire events are mainly con-

trolled by persistent drought conditions, and GEFF

prediction skill is high (well above the random fore-

cast). Conversely, in temperate regions, such as the

mountainous regions of Central Europe, fuel avail-

ability is limited. Here fire can depend on highly sto-

chastic conditions, such as the short-term superficial

drying of the available organic matter on the ground. In

these conditions, the skill of the system degrades al-

though it is still above the skill of a random forecast

because of the small-scale nature of the processes

involved.

The FWI and Mark 5 FDI indices have very similar

behavior and seem to outperform the NFDRS IC index

in some regions of the planet. It is fair to recall that

while the FWI and FDI only rely on weather inputs

FIG. 10. Percentage of a country’s surface that was affected by at least one fire during the

observational period. Gray shading indicates countries for which surface-area information is

missing (e.g., Afghanistan and Serbia; Esty et al. 2008).
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for their calculations, the IC highly depends on the

knowledge of fuel conditions such the vegetation state

and its annual cycle. This information has been pro-

vided in a mean climatological way and might not be

accurate enough to exploit the potential for this index.

Since the GEFF system is intended to provide

information on a regional to global scale, some com-

promises had to be made, the most important being the

substitution of human judgment with mean climato-

logical conditions for the vegetation evolutions that

penalized the NFDRS system.

The very promising results show that climate model

simulation may usefully extend the early warning

available from environmental monitoring. It is im-

portant to emphasize that this study is a first step and is

limited to identifying the potential skill in such a

FIG. 11. EDI for the three rating systems as in Fig. 8 but averaged at the country level using the

shapefiles for country borders that were defined in Esty et al. (2008).
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system. Actual skill of the operational forecasts

extending up to 10 days will be lower because of the

use of more uncertain weather forcings. In another

sense, the assessment also represents a lower thresh-

old of potential skill, since improvements in the

forecast modeling systems will increase skill over

time. A full analysis of the prediction skill will be the

natural next step.
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APPENDIX

Invariant Fields in the GEFF System

a. Vegetation stages

An annual climatology of vegetation stages is derived

starting from observations of leaf area index (LAI)

recorded by the MODIS instrument (Myneni et al.

2002). LAI is defined as the one-sided green leaf area

per unit ground area and has been used in land surface

FIG. A1. Global maps of climatological vegetation stages for (a) 1 Jan and (b) 1 Jul. This dataset is derived

starting from observations of LAI recorded by MODIS, applying a low-bandpass filter to remove the subseasonal

variability and analyzing quartile values.
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modeling as an indicator of the vegetation state (green-

up, green, transition, and curing processes) (Knote et al.

2009). The dataset used here has been processed from the

products MOD15A2 and spans the period 2000–13 with a

time resolution of 10 days, as described in Boussetta et al.

(2013). Quality control and temporal and spatial aggre-

gation have been performed on the original MODIS data

to generate an annual climatology of LAI that is now

employed operationally as climatological LAI field in the

ECMWF’s integrated forecasting system (IFS) model

(Boussetta et al. 2013).

Starting from this LAI dataset, we have calculated

vegetation stage intervals (examples for two days are

shown in Fig. A1). For each location a low-bandpass

filter is applied to the LAI climatological annual cycle to

remove data variability at scales lower than the seasonal.

The resulting curve is processed in terms of quartiles.

Days with LAI values larger than the upper quartile are

marked as ‘‘green,’’ while days with LAI value lower

than the lower quartile are flagged as ‘‘cured.’’ All days

remaining are checked against the derivative of the LAI

annual curve. If a point belongs to the up-slope part of the

curve (i.e., positive derivative) it is then flagged as ‘‘pre-

green,’’ otherwise it is marked as ‘‘transition.’’ This ap-

proach leads to very realistic climatological vegetation

stage in locations where vegetation is characterized by a

FIG. A2. Annual variability for the vegetation stage dataset in three selected locations:

(a) United States (39.758N, 115.758W), (b) Europe (39.158N, 7.658E), and (c) East Africa

(0.258S, 14.558E). The original LAI climatology (red dashed line) is smoothed with a low-

bandpass filter (black solid line) to remove variability below the seasonal scale. Then the

quartiles of the curve are analyzed to define the daily status among the four vegetation stages.
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clear annual cycle. In the extratropics where precipitation

is associated with frontal systems and is in general sea-

sonal, this is usually a good approximation (Figs. A2a,b).

In other regions, mostly in the tropics where precipitation

is driven by, for example, monsoon systems, a single

peaked annual vegetation cycle might not represent fully

the interannual variability. In East Africa, for example,

there are two monsoon-driven rainy seasons. They are

responsible for two germination phases in spring and au-

tumn (Fig. A2c). Only the green-up and green phases

associated with the long rain in April are picked by the

automatic procedure after the filter smoothing. From the

point of view of the fire danger assessment, this limitation

of the system in local points is nevertheless deemed ac-

ceptable since it goes in the direction of increasing the

false alarms while underestimating the missed events.

b. Orographic parameters

The model orographic parameters needed to initialize

GEFF are taken from IFS model’s invariant fields for

consistency. The orography is based on an interpolated

version of the terrain elevation dataset GTOPO30 at 30-s

FIG. A4. Annual accumulated climatology for rainfall (m yr21) calculated using the 1980–2014 ERA-Interim

daily precipitation (Dee et al. 2011). For every year of the 34-yr dataset, precipitation is first accumulated over one

calendar year. Then the average is calculated.

FIG. A3. Slope classes derived from the IFS model slope field.
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resolution everywhere except in Greenland where the

Kort-og Matrikelstyrelsen (KMS) DEM also at 30-s res-

olution is used.A1 The orographic high-resolution map is

also used to derive the land–seamask, which provides the

percentage of grid box coveredby land. TheGEFFmodel

converts this parameter into a mask where grid points

that have more than zero land are considered as land

points. This is a very conservative approach that never-

theless allows the inclusions of all coastal points and small

islands into the fire danger calculations.

The orography slope is an important factor to charac-

terize fire danger behavior. This parameter is calculated

at the model target resolution from the high-resolution

GTOPO30 orographic dataset (Baines and Palmer 1990;

Lott and Miller 1997). The slope value in IFS is trans-

formed into slope classes as in NFDRS implementation

(Cohen and Deeming 1985) following a simple linear

rescaling (Fig. A3).

c. Vegetation cover

The vegetation cover is an additional mask to exclude

points with no vegetation from the fire danger calculation.

In IFS, vegetation is represented by six climatological pa-

rameters: vegetation cover of low vegetation, vegetation

cover of high vegetation, low vegetation type, high vege-

tation type, leaf area index for low vegetation, and leaf

area index for high vegetation. These parameters are built

from the Global Land Cover Characteristics (GLCC)

dataset, which was derived from 1 year of Advanced Very

High Resolution Radiometer (AVHRR) data, digital el-

evation models, ecoregions, andmap data (Loveland et al.

2000). The nominal resolution is 1km, and the data come

on a Goode homolosine global projection. In GEFF, the

fractional covers for low and high vegetation are summed

to obtain a total vegetation cover. Following a conserva-

tive approach, any point with vegetation cover greater

than zero is assigned vegetation mask true.

d. Mean cumulative annual precipitation

One of the inputs needed in the calculation of the

Keetch–Byram drought index is the climatological total

annual expected precipitation in a location. The

Keetch–Byram drought index (Keetch and Byram 1968)

is essentially a bookkeeping record of water deficiency

in the soil. In these terms it describes anomalies rela-

tive to a defined mean state. Therefore, to avoid in-

consistency (biases) between the background status

defined by the expected climatological rain availability

and what is predicted daily by the forecast, all terms of

the water balance at the surface should be derived in a

consistent way. The annual accumulated climatology for

rainfall is therefore calculated using the 1980–2014

ERA-Interim (Dee et al. 2011) daily dataset by first

accumulating the precipitation over every year and then

calculating the average (Fig. A4).

FIG. A5. World climatic classes used in the GEFF system are based on the W. Köppen classification with the

following mapping conversion: class 4 (wet) to tropical, class 3 (humid) to mild/temperate, class 2 (subarctic) to

snow, and class 1 (arid/semiarid) to dry.

A1 The GTOPO30 dataset, as used in the IFS, was completed in

1996 through a collaborative effort led by the U.S. Geological

Survey Earth Resources Observation and Science Center (https://

lta.cr.usgs.gov/GTOPO30) and was derived from a variety of in-

formation sources. Extensive information can be found in

ECMWF (2014).
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e. Climatic classification

In the NFDRS, the response of fuel moisture to envi-

ronmental conditions is influenced by the mean climate.

Therefore, a climate class must be specified for each

grid point. In the 1978 implementation of the NFDRS

(Deeming et al. 1977) four classes were used to charac-

terize the U.S. climatic regions: 1—arid/semiarid (e.g.,

desert and steppe), 2—subarctic (e.g., taiga), 3—humid

(e.g., forest), and 4—wet (e.g., rain forest). This classifi-

cation was mostly based on the climate of temperature

and precipitation in a given location, which is very

similar to the approach adopted by W. Köppen for his

noted world climate classification (Kottek et al. 2006;

Chen and Chen 2013). To provide a numeric input to

the GEFF system, we have digitalized the five class

maps available in Chen and Chen (2013) with the fol-

lowing mapping conversion: class 4 (wet) to tropical,

class 3 (humid) to mild/temperate, class 2 (subarctic) to

snow, and class 1 (arid/semiarid) to dry (Fig. A5). In the

polar regions, vegetation and thus fire fuel are almost

negligible, and consequently the associated danger of

wildfire is null. The polar climate class is therefore

discarded.

f. Fuel model

The global fuel map used in the study (Fig. A6) is a

product developed by JRC and derived from the Global

Land Cover 2000 (GLC2000; http://forobs.jrc.ec.europa.

eu/products/glc2000/glc2000.php) database (Bartholomé
and Belward 2005) and related regional products for

Africa (Mayaux et al. 2004), Asia (Bartalev et al. 2002,

2003), and Europe. The GLC2000 was overlaid on the

NFDRS fuel models (Deeming et al. 1977; Bradshaw

et al. 1983) as mapped on the conterminous United

States by Burgan et al. (1998). It contains 20 vegetation

species listed in Table 3 plus a series of classes for

marsh, water bodies, urban, and agriculture. The de-

rived co-occurrence matrix of NFDRS fuel models and

GLC2000 land-cover classes was used as initial ref-

erence to derive, through expert judgment and in-

terpretation, the relationships of fuel model classes

with the rest of the world and regional land-cover leg-

ends. The resultingmap has 1-km spatial resolution and

is intended to provide a first approximation of the

spatial distribution of fuel complexes throughout the

world, as classified according to the NFDRS (Deeming

et al. 1977; Bradshaw et al. 1983).
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